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Abstract

The Hookean dumbbell model, which describes a polymer as two Brownian beads con-

nected by the Hookean spring, is the most simple model for polymer dynamics. In this

model, the center of mass exhibits normal diffusion, and the relaxation has a single expo-

nential decay. However, in some dynamic heterogeneous systems such as glassy polymers

and entangled polymers, anomalous diffusion is observed. For a single particle, there

are some models to describe the anomalous diffusion. The fluctuating diffusivity (FD)

model is a model that regards diffusivity as a time-dependent fluctuating variable. The

FD models describe the non-Gaussianity for the displacement distribution. In this work,

we introduce the FD model to the dumbbell model. We assume that the spatial scale

of the heterogeneity is comparable to the size of the polymer. With this assumption,

the diffusivities of each bead could be different from each other. Hence we introduce the

independent FD to each bead. We calculate the mean squared displacement (MSD) of

the center of mass, the end-to-end relaxation, and the relaxation modulus analytically,

with the transfer operator method. As a result, we find that the center of mass exhibits

a sub-diffusion, and the end-to-end relaxation and the relaxation modulus exhibit multi-

mode exponential decay. Besides, we reproduce the results of molecular simulations for

supercooled polymer, and the fitting parameters are corresponding to a physical picture

of the supercooled liquids.
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Chapter 1

Introduction

Some physical properties of polymers such as diffusion and viscoelasticity outcome from the
molecular dynamics of the polymers. To describe or predict the properties, a lot of coarse-
grained models for polymers have been developed[1, 2, 3].

The Hookean dumbbell model [1] (hereinafter the dumbbell model) is the simplest model to
describe the molecular dynamics of polymers. The dumbbell consists of two Brownian particles
connected by a linear spring. Each Brownian particle represents a group of monomers that com-
pose a polymer chain. The elastic force due to the linear spring represents the entropic elasticity.
Owning to the construction, we can calculate various properties analytically. For instance, the
center of mass (c.m.) exhibits a normal diffusion, i.e., the mean squared displacement (MSD) is
entirely proportional to time. The end-to-end relaxation of the bond vector and the relaxation
modulus exhibits a single exponential decay.

Mainly toward the rheological modeling of polymeric fluids, there have been a lot of exten-
sions for the dumbbell model. The modification of the dumbbell model can be classified into i)
the modification of the spring and ii) the modification of the mobility tensor of the Brownian
beads. In the FENE dumbbell model [4], a finitely extensible non-linear elastic (FENE) spring
is introduced instead of the linear spring to represent the fact that a polymer chain cannot be
extended to an infinite length. the FENE dumbbell was introduced for the extensional behavior
of polymers[4], and it was applied for the shear rheology as well[4, 5]. As the other approach,
the mobility tensor was replaced by the Oseen tensor for the hydrodynamic interaction [6], and
by the anisotropic mobility tensor for the entanglement effect [7]. These extensions reasonably
predict some non-linear rheological responses of polymers.

Nevertheless, we note that most of the dumbbell models exhibit the normal diffusion for the
c.m. This is rational because the internal force acting on the Brownian beads does not affect
the motion of the c.m. In this respect, the dumbbell models do not represent the sub-diffusive
motion of polymeric systems such as glassy and entangled systems.

Meanwhile, the sub-diffusion has been analyzed by the single-particle models. One of such
models is the continuous-time random walks (CTRW) [8], which is the theory describing the
hopping motion of a particle in a disordered lattice. In the CTRW, the particle is trapped for
a waiting time until the particle hops to the next lattice site. The jump size and the waiting
time are sampled from the distribution, and the sub-diffusion is obtained given that the waiting
time distribution realizes a finite mean-waiting time. With such a condition, the system does
not reach equilibrium and the CTRW is used to describe the weak ergodicity breaking in spin
glasses [9]. Also, the CTRW assumption is natural for biological systems in terms of the chemical
attachments which have a broad distribution for the reaction times [10], and the CTRW is applied
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CHAPTER 1. INTRODUCTION 4

for many biological systems [11, 12]. Another approach is the generalized Langevin equation
(GLE) [13, 14] which has a memory effect in friction term of the Langevin equation. The GLE
is derived by the projection operator applied to the Hamilton equation, and the GLE is exact
when the Gaussian assumption for the fast variables is justified. The GLE can describe the
sub-diffusion of the single-particle with a particular memory kernel [13], and the memory kernel
is uniquely determined from the MSD [13]. We can obtain the viscoelasticity of the system from
the MSD data of the single-particle by the generalized Einstein-Stokes relation [15].

Though the CTRW and the GLE are broadly applied for many systems, the applicability is
still controversial. In particular, CTRW cannot describe the sub-diffusion with the equilibrium
waiting time distribution. (it is cannot be used for equilibrium systems.) Besides, since the
CTRW does not include external forces explicitly, we cannot use the CTRW for the systems
under external forces. Concerning the GLE, due to the Gaussian assumption of the fast vari-
ables, it cannot describe the non-Gaussianity of the probability density function (PDF) of the
displacement, which is for example observed in supercooled liquids [16] and biological systems
[17, 18].

Toward these problems, the fluctuating diffusivity (FD) models have been developed in recent
years. In the FD models, the diffusivity is regarded as a time-dependent random fluctuating
value. They are studied recently in many contexts, in which the non-Gaussianity of PDF of
displacement of the single-particle is observed in dynamic heterogeneous environments [19, 20,
21]. These models describe the spatial and temporal dynamic heterogeneity by embedding it
into the time-dependent fluctuation of the diffusivity. Since the FD models are described by the
Langevin equation, they can include external forces on the particle [22], and there is no restriction
on whether the system is non-equilibrium or not. There are some typical models of FDs. One of
them is the Two-state (TS) model [19], in which the diffusivity is assumed to flip between only
two values. These two values represent the approximated mobility in such supercooled liquids
[23]. The other is the diffusing diffusivity (DD) model [24, 20]. The DD model is a continuous FD
model, where the diffusivity is the squared value of a vector that obeys an Ornstein–Uhlenbeck
process. The DD model describes the Brownian-yet-non-Gaussian diffusion, which means though
the particle exhibits the normal diffusion, the PDF is not Gaussian distribution. Besides, the
fluctuation behavior of the diffusivity is observed in entangled polymer melt [25] by calculating
the MSD with finite time ( called time-averaged MSD (TAMSD) in [25] ).

Two earlier studies use the FD for the dynamics of polymers. One of them introduces the
general FD to the dumbbell model [22]. In this model, the diffusivities are the same in the two
Brownian beads. This model results in that the c.m. exhibits normal diffusion, and the end-to-
end relaxation of the bond vector has multiple correlation modes. The other one introduces the
DD model to the Langevin equation of each mode in the Rouse model [26]. Although the target
polymer model is different from that of [22], the Langevin equations in each model are almost
the same and the result of [26] is similar to the result of [22].

However, especially in dynamic heterogeneous environments, the diffusivity may be different
for each position. Therefore, the assumption that each Brownian bead located at a different
position has the same diffusivity may not be correct when the dynamic heterogeneity is ob-
served in the smaller range than the size of polymers. In other words, the diffusivities could be
different in each Brownian bead to describe the dynamics of polymers in dynamic heterogeneous
environments.

In this work, we propose a new model for polymers in the dynamic heterogeneous environ-
ment such as glassy polymer melts by introducing the FD to the Hookean dumbbell model. In
this model, the diffusivities of the Brownian beads are not common in the dumbbell. Hereinafter,
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we call this model as the FD dumbbell model. We calculate the MSD of the c.m., the end-to-end
relaxation of the bond vector, and the relaxation modulus analytically, and compare them with
those of the Hookean dumbbell model. Afterwards, we attempt to describe the dynamics of
an unentangled glassy polymer melt and an entangled polymer melt by using the FD dumbbell
model.



Chapter 2

Model

2.1 Hookean dumbbell model

Let us consider a dumbbell that consists of two Brownian beads connected by a Hookean spring.
The dynamics of each Brownian bead of the dumbbell in a n spatial dimension space is described
by the Langevin equations that do not have the ballistic term as shown below.

0 = −nkBT
Q̄2

(R1 −R2)− γ
dR1

dt
+
√
2γkBTw1(t), (2.1a)

0 = −nkBT
Q̄2

(R2 −R1)− γ
dR2

dt
+
√
2γkBTw2(t), (2.1b)

where Rj is the position of j th Brownian bead, γ is a friction coefficient, kB is the Boltzmann
constant, and T is the temperature. wj(t) is the Gaussian white noise, which obeys

⟨wj(t)⟩ = 0, (2.2)⟨
wj(t)wk(t

′)
⟩
= δjkδ(t− t′)1, (2.3)

where j, k = 1, 2, 0 is the zero vector, and 1 is the unit tensor. The first term in the right-hand
side of Eqs. (2.1) represents the elastic forces and the coefficients nkBT/Q̄

2 are calculated by
the theory of entropic elasticity. Q̄ is called the segment size, and the squared value is equal
to the statistical average of |R1 −R2|2. The second term in the right-hand side of Eqs. (2.1)
represents the friction force, and the third term is the thermal fluctuation force. They are
caused by the many collisions of surrounding fluid particles. We can justify the Gaussian nature
of the fluctuation forces by the central limit theorem for the infinitesimal time average of the
impulsive forces caused by the collisions. The coefficient

√
2γkBT is from the fluctuation-

dissipation relation, which keeps the balance between the dissipation by the friction force and
the fluctuation force in the equilibrium state. We introduce the diffusivity D by using the
Einstein-Stokes relation

D =
kBT

γ
, (2.4)

and rewrite Eq. (2.1) as 
dR1

dt
= −nD

Q̄2
(R1 −R2) +

√
2Dw1(t), (2.5a)

dR2

dt
= −nD

Q̄2
(R2 −R1) +

√
2Dw2(t). (2.5b)
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The c.m. of the dumbbell defined as X0 := (R1 + R2)/2 and the bond vector defined as
X1 := R1 −R2 obey the following Langevin equation.

dX0

dt
=

√
2Dw1(t) +

√
2Dw2(t)

2
, (2.6a)

dX1

dt
= −2αDX1 +

√
2Dw1(t)−

√
2Dw2(t), (2.6b)

where α := n/Q̄2. From Eq. (2.6a), we can calculate the MSD of the c.m. as⟨
[X0(t)−X0(0)]

2
⟩
= nDt. (2.7)

The meaning of Eq. (2.7) is that the polymer represented by the dumbbell exhibits the normal
diffusion entirely. From Eq. (2.6b), the end-to-end relaxation can be calculated as

⟨X1(t) ·X1(0)⟩ =
n

α
exp (−2αDt) . (2.8)

The end-to-end relaxation is related to the rotational relaxation of the dumbbell. Also, in the
n = 2, 3 dimension space which has a coordinates of (x, y) or (x, y, z), the stress at the time t is
calculated as the Kramers form :

σ̂(X1) =
1

V

∂F(X1)

∂X1

=
αkBT

V
X1X1,

(2.9)

where the F is the free energy by the entropic elasticity defined as F(X1) := αkBT (X1 ·X1)/2
, and V represents the volume of the system. The shear relaxation modulus for one polymer
can be calculated by the Green-Kubo formula [27] :

G(t) =
V

kBT
⟨σ̂xy(t)σ̂xy(0)⟩ =

kBT

V
α2 ⟨[X1x(t)X1y(t)][X1x(0)X1y(0)]⟩ (2.10)

=
kBT

V
exp(−4αDt), (2.11)

where σ̂xy is the xy component of the stress tensor Eq. (2.9) and X1h for h = x, y is the h
component of X1. From Eqs. (2.8) and (2.11), the end-to-end relaxation and the relaxation
modulus exhibits the single exponential decay.

2.2 FD dumbbell model

Now, let us modify the dumbbell model shown above by introducing the FD to two beads. The
Langevin equations for the beads are written as follows.

dR1

dt
= − n

Q̄2
D1(t)(R1 −R2) +

√
2D1(t)w1(t), (2.12a)

dR2

dt
= − n

Q̄2
D2(t)(R2 −R1) +

√
2D2(t)w2(t). (2.12b)
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Dj(t) is the diffusivity for j th Brownian bead. Note that the diffusivity of one Brownian bead
is not always equal to the other, though the diffusivities can correlate with each other. Let us
rewrite Eqs. (2.12) according to the c.m. X0 and the bond vector X1 as shown below.

dX0

dt
= −α

2
∆D(t)X1 + Ξ̄(t), (2.13a)

dX1

dt
= −2αD̄(t)X1 +∆Ξ(t). (2.13b)

Here, we have these values :

D̄(t) :=
D1(t) +D2(t)

2
, (2.14)

∆D(t) := D1(t)−D2(t), (2.15)

Ξ̄(t) :=

√
2D1(t)w1(t) +

√
2D2(t)w2(t)

2
, (2.16)

∆Ξ(t) :=
√
2D1(t)w1(t)−

√
2D2(t)w2(t). (2.17)

The statistical averages of Ξ̄(t) and ∆Ξ(t) and over wj(t) are written as⟨
Ξ̄(t)

⟩
w
= 0, (2.18)

⟨∆Ξ(t)⟩w = 0. (2.19)

The correlations among Ξ̄(t) and ∆Ξ(t) averaged over wj(t) are written as⟨
Ξ̄(t)Ξ̄(t′)

⟩
w
= D̄(t)δ(t− t′)1, (2.20)⟨

∆Ξ(t)∆Ξ(t′)
⟩
w
= 4D̄(t)δ(t− t′)1, (2.21)⟨

Ξ̄(t)∆Ξ(t′)
⟩
w
= ∆D(t)δ(t− t′)1. (2.22)

In comparison between Eqs (2.6a) and (2.13a), the FD dumbbell has an extra term that expresses
the coupling between the motion of the c.m. and the fluctuation of the bond vector. The extra
term outcomes from that the diffusivity of one Brownian bead is not always equal to the other.
This term has an important effect on the diffusion of the c.m. as shown in the next section.



Chapter 3

Theory

In this section, we calculate the analytical solutions of the statistical values for the FD dumbbell
model. We use the transfer operator method, which is introduced by Uneyama et al. for
the analysis of the Ornstein-Uhlenbeck process with the FD (OUFD) [22]. Owning to their
calculation, we obtain the analytical solutions for a general FD model. Afterwards, we introduce
the TS model instead of the general FD model as an example.

3.1 Calculation of analytical solutions by transfer operator method

In the first place, let us start from the calculation of the MSD of the c.m. of the FD dumbbell
model. Since Eq. (2.13a) includes the fluctuation of the bond vector, we have to calculate the
solution for Eq. (2.13b) not only the solution for Eq. (2.13a). The solution of Eq. (2.13a) is

X0(t) =X0(0) +

∫ t

0
dτΞ̄(τ)− α

2

∫ t

0
dτ∆D(τ)X1(τ), (3.1)

and the solution of Eq. (2.13b) can be given by

X1(t) = exp

[
−2α

∫ t

0
dτD̄(τ)

]
X1(0) +

∫ t

0
dτ exp

[
−2α

∫ t

τ
dτ ′D̄(τ ′)

]
∆Ξ(τ). (3.2)

From Eq. (3.1), the MSD of the c.m. is calculated as⟨
[X0(t)−X0(0)]

2
⟩
=n

⟨
D̄
⟩
t

− α

∫ t

0
dτ

∫ t

0
dτ ′

⟨
∆D(τ)X1(τ) · Ξ̄(τ ′)

⟩
+
α2

4

∫ t

0
dτ

∫ t

0
dτ ′

⟨
∆D(τ)∆D(τ ′)X1(τ) ·X1(τ

′)
⟩
.

(3.3)
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By substituting Eq. (3.2) to Eq. (3.3), we obtain the MSD of the c.m. as shown below. The
detailed calculation is shown in Appendix A.⟨

[X0(t)−X0(0)]
2
⟩
− n

⟨
D̄
⟩
t

=− nα

∫ t

0
dτ

∫ τ

0
dτ ′

⟨
∆D(τ) exp

[
−2α

∫ τ

τ ′
dυD̄(υ)

]
∆D(τ ′)

⟩
+
nα

2

∫ t

0
dτ

∫ τ

0
dτ ′

⟨
∆D(τ)∆D(τ ′) exp

[
−2α

∫ τ

0
dυD̄(υ)− 2α

∫ τ ′

0
dυ′D̄(υ′)

]⟩

+ 2nα2

∫ t

0
dτ

∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′

⟨
∆D(τ)∆D(τ ′) exp

[
−2α

∫ τ

τ ′′
dυD̄(υ)− 2α

∫ τ ′

τ ′′
dυ′D̄(υ′)

]
D̄(τ ′′)

⟩
.

(3.4)

Hereafter, we represent the integrands in Eq. (3.4) as the correlation functions defined as follows.

Φ(t, t′) =

⟨
∆D(t) exp

[
−2α

∫ t

t′
dτD̄(τ)

]
∆D(t′)

⟩
. (3.5)

Ψ(t, t′) =

⟨
∆D(t)∆D(t′) exp

[
−2α

∫ t

0
dτD̄(τ)− 2α

∫ t′

0
dτ ′D̄(τ ′)

]⟩
. (3.6)

Ω(t, t′, t′′) =

⟨
∆D(t)∆D(t′) exp

[
−2α

∫ t

t′′
dτD̄(τ)− 2α

∫ t′

t′′
dτ ′D̄(τ ′)

]
D̄(t′′)

⟩
. (3.7)

Below, we shall calculate Φ(t), Ψ(t, t′) and Ω(t, t′, t′′) and integrate it to calculate MSD of the
c.m. analytically.

To obtain the analytical solution of Eq. (3.4), we calculate the correlation functions Eqs.(3.5)-
(3.7) by using the transfer operator method. To calculate Eq. (3.19), we introduce a path
probability P[ξ], which is the probability of a certain path ξ(t), and rewrite D(t) as a function
of path ξ(t) like D(t) = D(ξ(t)).

Φ(t, t′) =

∫
Dξ ∆D(ξ(t)) exp

[
−2α

∫ t

t′
dτD̄(ξ(τ))

]
∆D(ξ(t′))P[ξ]. (3.8)

We introduce a discrete time τ ≈ τi = i δτ , then ξ(τ) and ∆D(τ) can be rewritten as

ξ(τ) ≈ ξ(τi) = ξi, (3.9)

∆D(τ) = ∆D(ξ(τ)) ≈ ∆D(ξi). (3.10)

Further, we rewrite P[ξ] as P[ξ] = exp(−S[ξ]). If ξ(t) is a Markovian stochastic process, we can
rewrite S[ξ] as

S[ξ] ≈ δτ
∑
i

s(ξi+1, ξi). (3.11)
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Then, we can rewrite Eq. (3.8) as follows :

Φ(t, t′) ≈
∫ t/δτ∏

i=t′/δτ

dξi∆D(ξ(t)) exp

−2αδτ

t/δτ−1∑
i=t′/δτ

∆D(ξi)

 exp

δτ t/δτ−1∑
i=t′/δτ

s(ξi+1, ξi)

∆D(ξt′/δτ )P (ξt′/δτ )

=

∫ t/δτ∏
i=t′/δτ

dξi∆D(ξ(t)) exp

−δτ t/δτ−1∑
i=t′/δτ

{
s(ξi+1, ξi) + 2αD̄(ξi)

}∆D(ξt′/δτ )P (ξt′/δτ ).

(3.12)

Here, we performed the functional integral over ξ(τ) for τ < t′ and t < τ . Since the correlation
function is only dependent on ξ(τ) with t′ < τ < t, the functional integral over ξ(τ) for τ < t′ is
the probability distribution function P (ξt′/δt) and the functional integral over ξ(τ) for t < τ is
unity. Since we discuss in an equilibrium state, we define P (ξt′/δt) as the equilibrium probability
distribution as P (ξt′/δt) = Peq(ξt′/δt).

The factor e−δτs(ξi+1,ξi) represents the probability of transition from ξi to ξi+1. Thus,

P (ξi+1, ti+1) =

∫
dξie

−δτs(ξi+1,ξi)P (ξi, ti), (3.13)

where P (ξ, t) is an arbitrary function.
Meanwhile, the probability distribution of ξ at a certain time t follows a master equation

∂P (ξ, t)

dt
= L̂P (ξ, t), (3.14)

where P (ξ, t) is the probability distribution function. Eq. (3.14) can be solved as

P (ξ, ti+1) = eδτ L̂P (ξ, ti). (3.15)

By comparing Eq. (3.13) and Eq. (3.15), for any arbitral functions, we obtain∫
dξie

−δτs(ξi+1,ξi)P (ξi) = eδτ L̂P (ξi+1). (3.16)

We introduce a transfer operator Ŵ as

e−δτŴP (ξi+1) =

∫
dξi exp

[
−δτ

{
s(ξi+1, ξi) + 2αD̄(ξi)

}]
P (ξi)

= eδτ L̂
[
e−2δταD̄(ξi+1)P (ξi+1)

]
.

(3.17)

By expanding Eq. (3.17) keeping only the leading-order term, we can express Ŵ as

−ŴP (ξ) ≈
[
L̂ − 2αD̄(ξ)

]
P (ξ). (3.18)

At the limit of δτ → 0, Eq. (3.18) is exact. From Eq. (3.17), we can calculate Eq. (3.12) as

Φ(t, t′) =

∫
dξ ∆D(ξ)e−(t−t′)Ŵ∆D(ξ)Peq(ξ). (3.19)
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In a similar way, we can calculate Eq. (3.6) and Eq. (3.7) as shown below. The detailed
calculation is shown in Appendix B

Ψ(t, t′) =

∫
dξ∆D(ξ)e−(t−t′)Ŵ∆D(ξ)e−t′V̂P (ξ). (3.20)

Ω(t, t′, t′′) =

∫
dξ∆D(ξ)e−(t−t′)Ŵ∆D(ξ)e−(t′−t′′)V̂D̄(ξ)P (ξ). (3.21)

Here, V̂ is the transfer operator which is defined as shown below.

e−δτ V̂P (ξi+1) =

∫
dξi exp

[
−δτ

{
s(ξi+1, ξi) + 4αD̄(ξi)

}]
P (ξi)

= eδτ L̂
[
e−4δταD̄(ξi+1)P (ξi+1)

]
.

(3.22)

We use change of variables : {
t′ = τ − τ ′, (3.23a)

s′ = τ ′, (3.23b)

for the integral in the second line and the third line of Eq. (3.4), and
t′ = τ − τ ′, (3.24a)

s′ = τ ′ − τ ′′, (3.24b)

u′ = τ ′′, (3.24c)

for the integral in the fourth line of Eq. (3.4), and Eq. (3.4) can be calculated analytically as
shown below.⟨
[X0(t)−X0(0)]

2
⟩
=n

⟨
D̄
⟩
t− nα

∫ t

0
dt′(t− t′)Φ(t′)

+
nα

2

∫ t

0
dt′

∫ t−t′

0
ds′Ψ(t′, s′) + 2nα2

∫ t

0
dt′

∫ t−t′

0
ds′(t− t′ − s′)Ω(t′, s′),

(3.25)

where

Φ(t) =

∫
dξ ∆D(ξ)e−tŴ∆D(ξ)Peq(ξ), (3.26)

Ψ(t, s) =

∫
dξ∆D(ξ)e−tŴ∆D(ξ)e−sV̂Peq(ξ), (3.27)

Ω(t, s) =

∫
dξ∆D(ξ)e−tŴ∆D(ξ)e−sV̂D̄(ξ)Peq(ξ). (3.28)

The detailed integral calculation is shown in Appendix C.
Eq. (3.25) shows that the c.m. may exhibit an anomalous diffusion if the contributions of

the other terms rather than the first term are not negligible. Besides, by considering the order
of the integral, The c.m. shows a sub-diffusion at the diffusion time close to the relaxation times
of Φ(t), Ψ(t, s), and Ω(t, s). Note that all of the relaxation functions Φ(t), Ψ(t, s), and Ω(t, s)
have the ∆D term. This means the sub-diffusion results from the coupling term in Eq. (2.13a).
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At the limit of t → 0, the double integrals over t′ and s′ in Eq. (3.25) give O(t2) and O(t3)
terms. By neglecting these terms, we have the following expression.⟨

[X0(t)−X0(0)]
2
⟩
→ n

⟨
D̄
⟩
t. (t→ 0) (3.29)

From this expression, at the short-time limit, the c.m. exhibits a normal Brownian motion with
the diffusivity of DG =

⟨
D̄
⟩
/2. This result is identical to Eq. (2.7) for the original dumbbell

model.
To continue the calculation of Eqs.(3.26)-(3.28), we use the eigenvalue λn and the eigenfunc-

tion ψn(ξ) of Ŵ, which satisfy
Ŵψn(ξ) = λnψn(ξ) (3.30)

for Ŵ. Here, n is just an eigenfunction or eigenvalue number. We also introduce µm and ϕm(ξ),
which satisfy

V̂ϕm(ξ) = µmϕm(ξ) (3.31)

for V̂. We employ the basis sets of the eigenfunctions of Ŵ and V̂ as∫
dξψ†

m(ξ)ψn(ξ) = δmn (3.32)

and ∫
dξϕ†m(ξ)ϕn(ξ) = δmn, (3.33)

respectively. We can expand the applied function of e−tŴ in Eq. (3.26) by the eigenfunctions of
Ŵ and we obtain Eq. (3.26) as a sum of exponential functions as

Φ(t) =
∑
n

pne
−λnt, (3.34)

pn =

∫
dξ∆D(ξ)ψn(ξ)

∫
dξ′ψ†

n(ξ
′)∆D(ξ′)Peq(ξ

′). (3.35)

We expand the applied function of e−V̂ in Eq. (3.27) by the eigenfunctions of V̂, and expand
the eigenfunctions of V̂ by the eigenfunctions of Ŵ. Thus, we obtain Eq. (3.27) as

Ψ(t, s) =
∑
n

∑
m

qmne
−µms−λnt, (3.36)

qmn =

∫
dξ∆D(ξ)ψn(ξ)

∫
dξ′ϕ†m(ξ′)Peq(ξ

′)

∫
dξ′′ψ†

n(ξ
′′)∆D(ξ′′)ϕm(ξ′′). (3.37)

We can easily calculate Eq. (3.28) by replacing Peq(ξ) in Eq. (3.37) to D̄(ξ)Peq(ξ).

Ω(t, s) =
∑
n

∑
m

rmne
−µms−λnt, (3.38)

rmn =

∫
dξ∆D(ξ)ψn(ξ)

∫
dξ′ϕ†m(ξ′)D̄(ξ)Peq(ξ

′)

∫
dξ′′ψ†

n(ξ
′′)∆D(ξ′′)ϕm(ξ′′). (3.39)
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By performing the integral for the sum of exponential function, we can obtain the MSD of the
c.m. as⟨

[X0(t)−X0(0)]
2
⟩
= n

⟨
D̄
⟩
t− nα

∑
n

pn
λnt+ e−λnt − 1

λ2n

+
nα

2

∑
n

∑
m

qmn

µm

(
1− e−λnt

λn
− e−λnt − e−µmt

µm − λn

)
+ 2nα2

∑
n

∑
m

rmn

µmλn

(
t− µ2m(1− e−λnt)− λ2n(1− e−µmt)

µmλn(µm − λn)

)
.

(3.40)

In the second place, we obtain the end-to-end relaxation X1 and the relaxation modulus
analytically. The end-to-end relaxation X1 can be calculated as

⟨X1(t) ·X1(0)⟩ =
n

α

⟨
exp

[
−2α

∫ t

0
dτD̄(τ)

]⟩
. (3.41)

Also, we can calculate the relaxation modulus by substituting each component of Eq. (3.2) to
Eq. (2.10) as shown below.

G(t) =
kBT

V

⟨
exp

[
−4α

∫ t

0
dτD̄(τ)

]⟩
. (3.42)

Here, we use the relation α = n/
⟨
X2

1

⟩
= 1/

⟨
X2

1h

⟩
, where h = x, y. Eqs (3.43) and (3.44)

Eq. (3.41) can be calculated in the same way as that of the MSD of the c.m. :

⟨X1(t) ·X1(0)⟩ =
n

α

∫
dξe−tŴPeq(ξ). (3.43)

From Eq. (3.42), we can obtain the relaxation modulus can be calculated by replacing α in
Eq. (3.41) to 2α as

G(t) =
kBT

V

∫
dξe−tV̂Peq(ξ). (3.44)

Eqs (3.43) and (3.44) also can be expanded by eigenmodes as shown below.

⟨X1(t) ·X1(0)⟩ =
n

α

∑
n

sne
−λnt, (3.45)

sn =

∫
dξψn(ξ)

∫
dξ′ψ†

n(ξ
′)Peq(ξ

′), (3.46)

and

G(t) =
∑
m

Gme
−µmt, (3.47)

Gm =
kBT

V

∫
dξϕm(ξ)

∫
dξ′ϕ†m(ξ′)Peq(ξ

′). (3.48)

From Eqs (3.46) and (3.48), these correlations have multiple exponential relaxation modes unlike
those of the original dumbbell model. Eq. (2.13b) can be interpreted as the OUFD, and the
similar result has been obtained by Uneyama et al [22].
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3.2 Two-state diffusivity model

To proceed further, we employ the TS model as a fluctuating diffusivity model. In this model,
the diffusivity fluctuates between the fast state ( named f , D = Df ) and the slow state ( named
s, D = Ds). we define kf and ks as the transition rates for f → s and s→ f , respectively. The
master equation of this model is simple as written below.

d

dt

(
Pf (t)
Ps(t)

)
=

(
−kf ks
kf −ks

)(
Pf (t)
Ps(t)

)
. (3.49)

We call the dumbbell model with the TS model as the TS dumbbell model. In this TS dumbbell
model, each diffusivity is independent. For the system as a whole, there are four states in total
(ff , fs, sf , ss). Eqs (3.26)-(3.28) for the TS dumbbell model can be calculated as shown below.
The derivation of the correlation function Φ(t) is shown in Appendix E. The other correlation
functions can be derived in a similar way as Φ(t).

Φ(t) = (1 1 1 1) ∆D ψ e−Λt ψ−1∆D Peq. (3.50)

Ψ(t, s) = (1 1 1 1) ∆D ψ e−Λt ψ−1∆D ϕ e−Ms ϕ−1 Peq. (3.51)

Ω(t, s) = (1 1 1 1) ∆D ψ e−Λt ψ−1∆D ϕ e−Ms ϕ−1 D̄ Peq. (3.52)

Here, we define

∆D :=


∆D(ff) 0 0 0

0 ∆D(fs) 0 0
0 0 ∆D(sf) 0
0 0 0 ∆D(ss)

 =


0 0 0 0
0 Df −Ds 0 0
0 0 Ds −Df 0
0 0 0 0

 ,

(3.53)

Peq :=


Peq(ff)
Peq(fs)
Peq(sf)
Peq(ss)

 =
1

(ks + kf )2


ksks
kskf
kfks
kfkf

 , (3.54)

D̄ :=


D̄(ff) 0 0 0

0 D̄(fs) 0 0
0 0 D̄(sf) 0
0 0 0 D̄(ss)

 =


Df 0 0 0

0
Df+Ds

2 0 0

0 0
Ds+Df

2 0
0 0 0 Ds

 , (3.55)

ψ := (ψ1 ψ2 ψ3 ψ4) , (3.56)

Λ :=


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 , (3.57)

ϕ := (ϕ1 ϕ2 ϕ3 ϕ4) , (3.58)

M :=


µ1 0 0 0
0 µ2 0 0
0 0 µ3 0
0 0 0 µ4

 . (3.59)
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ψ and ϕ are diagonalization matrixes of the transfer matrix W and V, respectively, i.e., ψj is
the eigenvector and λj is the eigenvalue of W, and ϕk is the eigenvector and µk is the eigenvalue
of V. They satisfy

Wψ = ψΛ, (3.60)

Vϕ = ϕM. (3.61)

We use the transition matrix L and the transfer matrix W as shown below. The derivation of
this transition matrix is in Appendix F.

L :=


−2kf ks ks 0
kf −kf − ks 0 ks
kf 0 −kf − ks ks
0 kf kf −2kf

 , (3.62)

−W := L − 2αD̄, (3.63)

−V := L − 4αD̄. (3.64)

By calculating the eigenvector and the eigenfunction of W and V, we can obtain the MSD of
the c.m., the end-to-end relaxation X1 and the relaxation modulus. The expansion coefficient
pn, qmn, rmn, sn and Gm in Eqs (3.40), (3.46) and (3.48) can be calculated as shown below.

pn = (1 1 1 1) ∆D ψn ψ
†
n ∆D Peq. (3.65)

qmn = (1 1 1 1) ∆D ψn ϕ
†
m Peq ψ

†
n ∆D ϕm. (3.66)

rmn = (1 1 1 1) ∆D ψn ϕ
†
m D̄ Peq ψ

†
n ∆D ϕm. (3.67)

sn = (1 1 1 1) ψn ψ
†
n Peq. (3.68)

Gm =
kBT

V
(1 1 1 1) ϕm ϕ†

m Peq. (3.69)

We choose ψ†
n and ϕ†

m defined as 
ψ†

1

ψ†
2

ψ†
3

ψ†
4

 := ψ−1, (3.70)


ϕ†
1

ϕ†
2

ϕ†
3

ϕ†
4

 := ϕ−1. (3.71)

The eigenvalues of W are

λ1 = α(Df +Ds) + kf + ks, (3.72a)

λ2 = α(Df +Ds) + kf + ks, (3.72b)

λ3 = α(Df +Ds) + kf + ks +
√
α2(Df −Ds)2 + 2α(Df −Ds)(kf − ks) + (kf + ks)2, (3.72c)

λ4 = α(Df +Ds) + kf + ks −
√
α2(Df −Ds)2 + 2α(Df −Ds)(kf − ks) + (kf + ks)2. (3.72d)
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The eigenvalues of V are

µ1 = 2α(Df +Ds) + kf + ks, (3.73a)

µ2 = 2α(Df +Ds) + kf + ks, (3.73b)

µ3 = 2α(Df +Ds) + kf + ks +
√
4α2(Df −Ds)2 + 4α(Df −Ds)(kf − ks) + (kf + ks)2, (3.73c)

µ4 = 2α(Df +Ds) + kf + ks −
√

4α2(Df −Ds)2 + 4α(Df −Ds)(kf − ks) + (kf + ks)2. (3.73d)

We can obtain the longest relaxation time of the end-to-end relaxation and the relaxation mod-
ulus from these expressions.



Chapter 4

Results

4.1 Comparison with numerical simulations

To confirm the theoretical calculation results shown in Eq. (3.25), we performed numerical
simulations of the TS dumbbell model. We compare the theoretical calculation results of the
MSD of the c.m. and the end-to-end relaxation with those of the simulation results. This
simulation integrated Eqs. (2.12) for the diffusivity assumed in the TS model with a discrete
time δt, and calculated the position of the c.m. and the bond vector. At each time step, the
updates of the position and the diffusivity were performed independently from each other. The
update for the position was calculated by the stochastic Runge-Kutta method [28], which is
the Euler type method introduced for stochastic processes. The update for the diffusivity is
calculated exactly to satisfy the transition of Eq. (3.49) for each bead. D1(t) and D2(t) flip
between Df and Ds along with the transition possibility derived in Appendix F. From these
updating methods, the error for each update is estimated as O(δt2). The simulation created
Nt data points, and we took the average over the data points to calculate the statistical values.
We set δt = 0.001 and Nt = 107. The other parameters of the TS model is set at Df = 5.0,
Ds = 0.0, α = 3 and n = 3.

Fig. 4.1 shows the calculation result for the theoretical calculations and the numerical simu-
lation results with the same parameters. Fig. 4.1(a) shows the agreement of the MSD of the c.m.
between the theoretical calculation and the numerical simulation result. In Fig. 4.1(b), the sim-
ulation results deviate from the theoretical curves in the long time region due to poor statistics
in this time range. Nevertheless, the theory reasonably reproduces the numerical results.

18
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Figure 4.1: Comparison of the MSD of the c.m. (a) and the end-to-end relaxation (b) between
theoretical calculation and numerical simulation with various parameters. We set the other
parameters as Df = 5.0, Ds = 0.0, α = 3 and n = 3.
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4.2 Calculations for some parameters

In this section, owing to the validation of the theory in the previous section, we show some typical
calculation results with some sets of parameters. We employ the TS model as the FD model.
We compare the MSD of the c.m. and the end-to-end relaxation between the TS dumbbell
model and the original dumbbell model. We obtain the values of the original dumbbell model
by substituting the average of the diffusivity in the TS model into Eqs (2.7) and (2.8). Since
the relaxation modulus is almost the same as the end-to-end relaxation as seen in Eqs (3.43)
and (3.44), we omit the result of the relaxation modulus. The eigenvector and the eigenvalue of
the transfer matrixes are numerically calculated. We choose a unit of length, time, and mass as
t0 = Q̄2/Df , r0 = Q̄ and m0 = kBTQ̄

2/D2
f , respectively. We set the spatial dimension as n = 3.

We fix the other parameters as Df = 1, Q̄ = 1, and V = Q̄3. Thus, the characteristic values are
Ds/Df , and kf and ks.

In Fig. 4.2 to Fig. 4.4, we show the effects of the transition rates. Fig. 4.2 shows the entire
match between the calculation results of the TS dumbbell and those of the original dumbbell for
kf = 100. From Fig. 4.2, the MSD of c.m. and the end-to-end relaxation converge to those of the
original dumbbell model with the high transition rates. In Fig. 4.3, kf value is reduced from 100
to 1. In Fig. 4.3(a), the sub-diffusion of the MSD can be observed when the ratio between the
transition rates ks/kf becomes small. The ratio also affects the relaxation time of the end-to-end
relaxation as seen in Fig. 4.3(b). The deviation from the original dumbbell becomes significant
for the small ks/kf values. In Fig. 4.4, kf is further reduced to 10−3. From Fig. 4.4(a), for
this case, the sub-diffusion in the MSD becomes more apparent and the transitional region is
elongated when ks/kf ratio becomes small. Fig. 4.4(b) demonstrates that the deviation from
the original dumbbell is enhanced. Further, for the case of ks/kf = 1, a two-step relaxation is
observed.

From Fig. 4.4(a), the plateau range of the MSD is observed from the transition rate and the
low these ratios. Also, we can observe the definite multi-mode relaxation in Fig. 4.4(b) with the
low transition rate and ks/kf = 1.
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Figure 4.2: MSD (a) and end-to-end relaxation (b) of the TS dumbbell model for kf = 100,
Ds = 0 and Df = 1 with various ks values. The solid curves represent the theoretical calculation
in the TS dumbbell model. The prediction of the original dumbbell model is shown by dashed
curves. The values of the original dumbbell model are obtained from Eqs (2.7) and (2.8) with
the average of the diffusivity. The results for both models are completely matched with each
other.



CHAPTER 4. RESULTS 21

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

(a)

〈[
X

0
(t

) 
−

 X
0
(0

)]
2
〉

t

Original dumbbell ks / kf = 1

ks / kf = 10
−3

ks / kf = 10
−5

TS dumbbell ks / kf = 1

ks / kf = 10
−3

ks / kf = 10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

(b)

〈X
1
(t

)•
X

1
(0

)〉

t

Original dumbbell ks / kf = 1

ks / kf = 10
−3

ks / kf = 10
−5

TS dumbbell ks / kf = 1

ks / kf = 10
−3

ks / kf = 10
−5

Figure 4.3: MSD (a) and end-to-end relaxation (b) of the TS dumbbell model for kf = 1, Ds = 0
and Df = 1 with various ks values. The solid curves represent the theoretical calculation in
the TS dumbbell model. The prediction of the original dumbbell model is shown by dashed
curves. The values of the original dumbbell model are obtained from Eqs (2.7) and (2.8) with
the average of the diffusivity.

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

(a)

〈[
X

0
(t

) 
−

 X
0
(0

)]
2
〉

t

Original dumbbell ks / kf = 1

ks / kf = 10
−2

ks / kf = 10
−5

TS dumbbell ks / kf = 1

ks / kf = 10
−2

ks / kf = 10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

(b)

〈X
1
(t

)•
X

1
(0

)〉

t

Original dumbbell ks / kf = 1

ks / kf = 10
−2

ks / kf = 10
−5

TS dumbbell ks / kf = 1

ks / kf = 10
−2

ks / kf = 10
−5

Figure 4.4: MSD (a) and end-to-end relaxation (b) of the TS dumbbell model for kf = 10−3,
Ds = 0 and Df = 1 with various ks values. The solid curves represent the theoretical calculation
in the TS dumbbell model. The prediction of the original dumbbell model is shown by dashed
curves. The values of the original dumbbell model are obtained from Eqs (2.7) and (2.8) with
the average of the diffusivity.

In Fig. 4.5, we show the effect of the diffusivities. Here, we choose kf = 10−3 and ks = 10−8

to observe the sub-diffusion. For both of the MSD (Panel (a)) and the end-to-end relaxation
(Panel (b)), the deviations from the original dumbbell become larger with the smaller Ds. This
result is rational because the deviations come from the difference of the diffusivities as seen in
Eqs (3.25) and (3.43). Note that the result approaches to those of the original dumbbell when
Df → Ds.
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Figure 4.5: MSD (a) and end-to-end relaxation (b) of the TS dumbbell model for kf = 10−3,
ks = 10−8 and Df = 1 with various Ds values. The solid curves represent the theoretical
calculation in the TS dumbbell model. The prediction of the original dumbbell model is shown
by dashed curves. The values of the original dumbbell model are obtained from Eqs (2.7) and
(2.8) with the average of the diffusivity.



Chapter 5

Discussion

5.1 Comparison with original dumbbell model

In this section, we discuss the differences between the FD dumbbell model and the original
Hookean dumbbell model based on the results of the TS dumbbell model shown in the previous
section.

Let us start with the effect of the state transition. From Fig. 4.2, the MSD of the c.m. and
the correlation functions ( the end-to-end relaxation and the relaxation modulus ) of the TS
dumbbell converge to those of the original dumbbell model. At the limit of large transition rates,
the eigenvalues of the transition matrix L become large, and the transition between the states
proceeds fast. Thus the average value of the diffusivity becomes dominant. Similarly, with the
general FD model, if the state relaxation is fast, the results of the FD dumbbell converge to
those of the original dumbbell model.

When the state relaxation is not so fast, the effect of the FD appears like Fig. 4.3. From
(3.25), the integral including Φ(t) will be dominant at the long time range. We can estimate
the time range of the sub-diffusion from the integral in Eq. (3.40). By expanding e−λnt, we can
estimate that the sub-diffusion starts at the time when the (λnt)

2 term cannot be ignored. In
other words, the sub-diffusion starts at the 1/λmax, where the λmax is the maximum eigenvalue.

The effect of the difference of the diffusivities is clear. Since the sub-diffusion is caused by the
difference of the diffusivities, the size of the deviation from the original dumbbell model obeys
the size of the difference between Df and Ds. More generally, the magnitude of the fluctuation
of the diffusivity also decides the deviation from the original dumbbell model.

5.2 Comparison with molecular simulations

Comparison with glassy polymer melt

From the results shown above, the c.m. of the TS dumbbell model shows the sub-diffusion with
specific parameters. Thus, it may be able to describe the dynamics of polymers in heterogeneous
environments. In this section, we discuss simulation results of the supercooled or glassy melt by
the TS dumbbell model.

In glassy unentangled polymer melts at high temperatures, the MSD of the c.m. crosses over
from the ballistic range to the diffusion range directly. Besides, at low temperatures, the MSD
of the c.m. has a plateau range between the ballistic range and the diffusion range.
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Since the TS model is the model that regards the dynamic heterogeneity in glassy systems as
two-state fluctuating diffusivity [23, 19], it is likely to describe the dynamics in the supercooled
liquids. With this idea, we use the TS dumbbell model for the description of the dynamics of
the supercooled polymer melts. We assume that the fluctuating process can be regarded as the
Markovian TS model.

Note that the ergodicity is broken in the glassy condition and we cannot use the dumbbell
theory, which is established with the equilibrium statistical mechanics for those systems. We
apply the TS dumbbell model for the supercooled liquids with the assumption that the system
is in the equilibrium state but a quasi-equilibrium state.

We compare the TS dumbbell model for the results of molecular dynamics simulations,
which were performed by Bennemann et al. [29]. In the study, polymers are described as a
series of beads that are connected by springs. The beads interact with each other through a
Lennard-Jones (LJ) potential

ULJ(rjk) = 4ϵ

[(
σ

|rjk|

)12

−
(

σ

|rjk|

)6
]
, (5.1)

where rjk is the relative vector defined as rjk = Rj − Rk. In the simulation, LJ potential is

cut off at 2× 2
1
6σ and shifted up so that the potential is continuous at the cut point shown as

shown below.

ULJ(rjk) =

 4ϵ

[(
σ

|rjk|

)12
−
(

σ
|rjk|

)6
+ 27−1

214

]
(|rjk| ≤ 2× 2

1
6σ)

0 (2× 2
1
6σ < |rjk|)

(5.2)

ϵ and σ are correspond to the magnitude and the width of the LJ potential, respectively, The
unit energy is set at ϵ, and the unit length is set at σ. The potential of the spring is described
by the FENE potential :

UFENE(rjk) = −15R2
0 ln

[
1−

(
|rjk|
R0

)]
(5.3)

with R0 = 1.6. This potential works only for the neighboring beads. The total equilibrium
length l0 is l0 = 0.96. The number of beads is chosen as N = 10, which does not show
the entangle effects. This simulation is performed in the canonical (NVT) ensemble using the
Nose–Hoover thermostat. The equilibrium density is calculated by the NPT simulation before
the NVT simulation.

We fit the expression of Eq. (3.25) of the TS dumbbell model. We set the unit of length as
σ, the unit of energy as kBT and the unit of mass as the mass of the Lennard-Jones particle.
The fitting parameters are Df , kf and ks. Ds and α are fixed as Ds = 0.0, α = 3.0 and n = 3.
We assume Ds = 0.0 because the dynamics of the bead is strongly restricted at slow state and
we assume the diffusivity as zero.

Fig. 5.1 shows the results of fitting for the temperature T = 1 and T = 0.48. Table 5.1 shows
the fitting parameters. Since the Langevin equations of the FD dumbbell are over-dumped type
and do not contain inertia terms, we ignore the values in the ballistic range. We confirm that
the TS dumbbell can describe the anomalous diffusion in this glassy polymer melt.
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Table 5.1: The fitting parameters for the result of the simulation for the glassy polymer melts[29].
The other parameters are fixed at Ds = 0, α = 3, n = 3.

T Df kf ks
1 3.4× 10−2 4.1× 10−4 4.1× 10−4

0.48 4.6× 10−1 1.6× 10−4 1.8× 10−6
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Figure 5.1: Comparison of the MSD of the MD simulation [29] with that of the TS dumbbell
model predictions at (a)T = 1 and (b)T = 0.48. The fitting parameters are shown in Fig. 5.1.
The unit of length, energy, and mass are set at the same as the molecular simulations.

From the parameters in Table 5.1, we can estimate the condition of the dynamics of the
polymers. From Eq. (3.49), we can calculate the steady possibility for the state f and the state
s. We call them as Pf and Ps, respectively. They can be calculated as shown below.

Pf =
ks

kf + ks
, (5.4)

Ps =
kf

kf + ks
. (5.5)

By calculating these values from the result in Table 5.1, we obtain Pf and Ps in Table 5.2.
From Table 5.2, we can see that in the weak glassy state at T = 1, the state possibilities are
almost the same. It means that the beads of the dumbbell can take any states, and the mobility
restriction is weak. Besides, in the strong glassy state at T = 0.48, the possibility of s state is
dominant. This means that the beads are restricted in s state and the mobility restriction is
very strong in the state. This result agrees with the physical picture of the glassy state, where
the mobility restriction of the slow range is so strong that the beads cannot move freely. The
steady possibilities for the dumbbell itself also can be calculated from Eq. (3.54). The result is
almost the same as that of the single Brownian bead.

Table 5.2: Steady possibilities for each state calculated by the fitting parameters. They are
obtained from Eq. (5.5). The parameters in Eq. (5.5) are shown in Table 5.1.

T Pf Ps

1 5.0× 10−1 5.0× 10−1

0.48 1.1× 10−2 9.9× 10−1
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However, the relaxation behavior of the TS dumbbell model is different from that of the
simulation result or real systems. In the supercooled polymer melt, the relaxation function is the
stretched-exponential function ( KWW type ), which have tβ factor in the exponential argument
[29]. β is the KWW index with 0 < β < 1. The relaxation functions of the Markovian FD
dumbbell model are multiple exponential functions with any FD models, and the FD dumbbell
cannot describe the KWW type decay in principle.

The non-Markovian OUFD has been developed by Miyaguchi et al [30]. With the non-
equilibrium waiting time distribution, the relaxation function of the OUFD exhibits the KWW
type relaxation. Thus, if the fluctuation of the diffusivity in the TS dumbbell model is non-
Markovian, it also may be able to describe the KWW type relaxation. For the non-Markovian
process, we cannot use the theory of the transfer operator. The TS model with the limit of
Df → ∞, Ds = 0 can be regarded as the CTRW model, and a similar calculation can be applied
for the non-Markovian processes. To calculate the non-Markovian TS dumbbell, we have to use
the theory of the CTRW.

Comparison with entangled polymer melt

In this section, we attempt to compare the TS dumbbell model to the simulation result of the
entangled polymer melts. We assume that the movement of the entangled point is restricted,
and the diffusivity is small. With this rough picture, the TS dumbbell model may describe the
dynamics of the entangled polymer melts, by assuming the diffusivity of the unentangled point
as fast, and that of the entangled point as slow.

We apply the TS dumbbell model for the results of a coarse-grained model, which was
developed by Uneyama et al. [31]. The slip-spring model [32] is one of the coarse-grained
models for entangled polymers, in which the polymer is connected with the other spring. This
spring is called slip-spring, and the other end is fixed at space, and the other end can slide on
the polymer chain. This model can describe the diffusion and rheological behaviors of entangled
polymers well.

We performed the fitting with fitting function Eq. (3.25) with the TS model. We choose the
rescaling parameter as 0.1 for the time axis and 0.1 for the MSD axis. With these parameters,
we fixed the values of the simulation results. The fitting parameters were Df , Ds, and kf . The
other parameters were fixed as ks = 1.6× 10−2, α = 3.0 and n = 3.

Fig. 5.2 shows the comparison between the MSD of the c.m. of the TS dumbbell model and
that of the slip-spring simulation with the number of beads N = 10, 20. Table 5.3 shows the
calculated fitting parameters.

Table 5.3: Fitting parameters for entangled polymer simulation[31]. The other parameters are
fixed as ks = 1.6× 10−2, α = 3.0 and n = 3.

N Df Ds kf
10 8.9× 10−2 9.5× 10−2 1.0× 10−1

20 2.8× 10−1 6.6× 10−3 7.8× 10−2
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Figure 5.2: Fitting result for entangled polymer simulation. The unit time of the TS dumbbell
model is 10 times that of the simulation, and the unit length is

√
10 times that of the simulation.

The TS dumbbell model cannot reproduce the results of the slip-spring simulation in the
short time range as seen in Fig. 5.2. There are some reasons for this result. First, at least with
the TS model, the form of expression in Eq. (3.25) cannot show the form of diffusion behavior
[31] for entangled polymers as

⟨
[X0(t)−X0(0)]

2
⟩
∝


t (t ≲ τe),

t1/2 (τe ≲ t ≲ τR),
t (t ≲ τR),

(5.6)

where τe is the entanglement time, and τR is the Rouse time of the entangled polymer. Eq. (3.25)
with the TS model does not have a long time ∝ t1/2 dependency. We consider the reason
as the lack of relaxation modes in Eqs.(3.26)-(3.28). The OUFD with the DD model, which
is a continuous FD model has the ∝ t−1/2 dependency in the relaxation function. The FD
dumbbell with such a continuous FD model may exhibit the ∝ t1/2 dependency from the similar
mechanism.

Moreover, the dumbbell estimation may be too rough to describe the entangled polymers.
If we assume a condition that the polymer is in a homogeneous state, the diffusivity may not
fluctuate. The polymers in such liquids exhibit multiple relaxation modes. Meanwhile, that of
the FD dumbbell without the fluctuation of the diffusivity naturally exhibits the single relaxation
behavior. To solve this contradiction, introducing the FD to the Rouse model [3] may be effective.
The Rouse model is a coarse-grained model for polymers which regard the polymer as the many
Brownian beads connected by the Hookean spring. The Rouse model also exhibits the multiple
relaxation modes due to the number of the configuration modes. We may be able to describe the
dynamics of polymers in heterogeneous environments by using the Rouse model with the FD,
and to describe that of polymers in homogeneous environments comprehensively by weakening
the fluctuation of the diffusivity. Also, by introducing the FD to the Rouse model, we can
describe the more detailed fluctuation of the diffusivities for each bead ( or each position ), and
it seems to be physically reasonable model for polymers.
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Conclusion

In this work, we introduced the FD model to the Hookean dumbbell model and calculated
the MSD of the c.m., the end-to-end relaxation, and the relaxation modulus analytically. The
characteristic feature of the FD dumbbell model is that the diffusivities of dumbbell beads are
not common.

For the analytical calculation, we described the ensembled average derived from solutions of
the Langevin equations as the average of the state path function. We used the discrete time
for the path function. Under the assumption of the Markovian process of the path function, we
calculated the integrands of the MSD of the c.m. As a result, the c.m. of the FD dumbbell model
exhibits the sub-diffusion with the characteristic time of eigenvalues of the transfer operator.
Also, the end-to-end relaxation and the relaxation modulus have the multiple relaxation modes
with the characteristic time.

To confirm the theoretical calculations, we performed the numerical simulations of the TS
dumbbell model. The result is in excellent agreement with the theoretical calculation. From
this result, the theoretical calculation is validated.

We used the TS dumbbell model to describe the anomalous diffusion in the unentangled
supercooled polymer melt. We fit the parameters of the TS dumbbell to the weak supercooled
state with a relatively high transition rate and the strongly supercooled state with the relatively
low transition rate. This result may suggest the mobility restriction in the supercooled liquid.
However, the correlation functions do not show the KWW type relaxation　 as long as the
fluctuating process of the diffusivity is Markovian.

We also attempted to describe the anomalous diffusion in the entangled polymer melt by the
TS dumbbell model. The TS dumbbell cannot reproduce the results of the simulation. This may
be mainly because of the lack of beads number or lack of states. Also, characteristic relaxation
times of the FD dumbbell model and entangled polymer are different from each other. Thus, the
FD dumbbell model may be not good model to describe the dynamics of the entangled polymer.

From the results mentioned above, the FD dumbbell model is the minimum model to describe
the diffusion dynamics of polymers in heterogeneous environments. There are some conceivable
solutions for the defect of the TS or FD dumbbell model. One of them is replacing the Markovian
FD with the non-Markovian FD for the description of the glassy polymer. The dumbbell model
with non-Markovian FD may describe the KWW type relaxation because the non-Markovian
OUFD exhibits KWW type relaxation. The other solution is introducing the other FD model
instead of the TS model, and another is introducing the FD to the Rouse model. The reason for
that the TS dumbbell model cannot describe the dynamics of the entangled polymer is considered
to be the lack of relaxation modes. By using the other FD model which has infinite states, we
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can obtain infinite relaxation modes due to the number of the states. Also, by introducing the
FD model to the Rouse model, we can obtain almost infinite relaxation modes due to the number
of the configuration modes.
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Appendix

A Detail calculation of MSD in FD dumbbell model

In this appendix, we show the detail calculations from Eq. (3.3) to Eq. (3.4).
By substituting Eq. (3.2) to Eq. (3.3), we have

⟨
∆D(τ)X1(τ) · Ξ̄(τ ′)

⟩
=

⟨
∆D(τ) exp

[
−2α

∫ τ

0
dυD̄(υ)

]
X1(0) · Ξ̄(τ ′)

⟩
+

∫ τ

0
dυ

⟨
∆D(τ) exp

[
−2α

∫ τ

υ
dυ′D̄(υ′)

]
∆Ξ(υ) · Ξ̄(τ ′)

⟩
=

∫ τ

0
dυ

⟨
∆D(τ) exp

[
−2α

∫ τ

υ
dυ′D̄(υ′)

]
∆Ξ(υ) · Ξ̄(τ ′)

⟩
=n

∫ τ

0
dυ

⟨
∆D(τ) exp

[
−2α

∫ τ

υ
dυ′D̄(υ′)

]
∆D(τ ′)δ(υ − τ ′)

⟩
.

(A.1)

From Eq. (2.22), for the case 0 < τ ′ < τ ,

⟨
∆D(τ)X1(τ) · Ξ̄(τ ′)

⟩
= n

⟨
∆D(τ) exp

[
−2α

∫ τ

τ ′
dυ′D̄(υ′)

]
∆D(τ ′)

⟩
, (A.2)

and for the case τ < τ ′,
⟨
∆D(τ)X1(τ) · Ξ̄(τ ′)

⟩
= 0. Thus, we have∫ t

0
dτ

∫ t

0
dτ ′

⟨
∆D(τ)X1(τ) · Ξ̄(τ ′)
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= n

∫ t

0
dτ

∫ τ

0
dτ ′

⟨
∆D(τ) exp

[
−2α

∫ τ
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]
∆D(τ ′)

⟩
.

(A.3)
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Also, we have⟨
∆D(τ)∆D(τ ′)X1(τ) ·X1(τ
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⟩
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With Eq. (A.2) and Eq. (A.4), we can rewrite Eq. (3.3) as⟨
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B Detail calculation of correlation functions in FD dumbbell
model

In this appendix, we show the detail derivations of Eq. (3.20) and Eq. (3.21).
First, we derive Eq. (3.20). In the same way as Φ(t), Eq. (3.6) can be calculated as

Ψ(t, t′) =
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δtD̄(ξi)

∆D(ξt′/δt) exp

−4α

t′/δt−1∑
i=0

δtD̄(ξi)


× exp

−δt t/δt−1∑
i=0

s(ξi+1, ξi)

P (ξ0)
=

∫ t/δt∏
i=0

dξi∆D(ξ(t)) exp

−δt t/δt−1∑
i=t′/δt

{
s(ξi+1, ξi) + 2αD̄(ξi)

}∆D(ξt′/δt)

× exp

−δt t′/δt−1∑
i=0

{
s(ξi+1, ξi) + 4αD̄(ξi)

}P (ξ0)
=

∫ t/δt∏
i=t′/δt

dξi∆D(ξ(t)) exp

−δt t/δt−1∑
i=t′/δt

{
s(ξi+1, ξi) + 2αD̄(ξi)

}∆D(ξt′/δt)e
−t′V̂P (ξt′/δt)

=

∫
dξ∆D(ξ)e−(t−t′)Ŵ∆D(ξ)e−t′V̂P (ξ).

(B.1)
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Second, we derive Eq. (3.21). Eq. (3.7) also can be calculated as

Ω(t, t′, t′′) =

⟨
∆D(t)∆D(t′) exp

[
−2α

∫ t

t′′
dτD̄(τ)− 2α

∫ t′

t′′
dτ ′D̄(τ ′)

]
D̄(t′′)

⟩

=

∫
Dξ∆D(ξ(t)) exp

[
−2α

∫ t

t′
dτD̄(ξ(τ))

]
∆D(ξ(t′)) exp

[
−4α

∫ t′

t′′
dτ ′D̄(ξ(τ ′))

]
D̄(t′′)P[ξ]

≈
∫ t/δt∏

i=t′′/δt

dξi∆D(ξ(t)) exp

−2α

t/δt−1∑
i=t′/δt

δtD̄(ξi)

∆D(ξt′/δt) exp

−4α

t′/δt−1∑
i=t′′/δt

δtD̄(ξi)


× exp

−δt t/δt−1∑
i=t′′/δt

s(ξi+1, ξi)

 D̄(ξt′′/δt)P (ξt′′/δt)

=

∫ t/δt∏
i=0

dξi∆D(ξ(t)) exp

−δt t/δt−1∑
i=t′/δt

{
s(ξi+1, ξi) + 2αD̄(ξi)

}∆D(ξt′/δt)

× exp

−δt t′/δt−1∑
i=t′′/δt

{
s(ξi+1, ξi) + 4αD̄(ξi)

} D̄(ξt′′/δt)P (ξt′′/δt)

=

∫ t/δt∏
i=t′/δt

dξi∆D(ξ(t)) exp

−δt t/δt−1∑
i=t′/δt

{
s(ξi+1, ξi) + 2αD̄(ξi)

}∆D(ξt′/δt)

× e−(t′−t′′)V̂D̄(ξt′/δt)P (ξt′/δt)

=

∫
dξ∆D(ξ)e−(t−t′)Ŵ∆D(ξ)e−(t′−t′′)V̂D̄(ξ)P (ξ)

(B.2)

C Change of variables in FD dumbbell model

In this appendix we show the derivation of Eq. (3.25) by change the variables and perform the
multiple integral.

First, we calculate the first term in the right hand side of Eq. (3.4). We apply change of
variables as shown below.

x = τ − τ ′ (C.1)

y = τ ′ (C.2)

Integral range of τ, τ ′ is

τ ′ : 0 → τ (C.3)

τ : 0 → t. (C.4)

Therefore, from Fig. 2, the integral range of x, y is

x : 0 → t (C.5)

y : 0 → t− x. (C.6)
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τ

τ’

t

t

O

Figure 1: Integral range for τ, τ ′

x

y

t

t

O

Figure 2: Integral range for x, y

The integral range is shown in Fig. 2.
Jacobian of this multiple integral is

J(x, y) =
∂(τ ′, τ)

∂(x, y)
=

(
0 1
1 1

)
. (C.7)

Also, from Eq. (3.19), Φ is depends only on τ − τ ′ = x. The first term of Eq. (3.4) can be
calculated as

−nα
∫ t

0
dτ

∫ τ

0
dτ ′Φ(τ, τ ′) = −nα

∫ t

0
dx

∫ t−x

0
dy| det(J(x, y))|Φ(x) = −nα

∫ t

0
dx(t− x)Φ(x).

(C.8)

With the same change of variables, the second term in the right hand side of Eq. (3.4) also
can be rewritten as

nα

2

∫ t

0
dτ

∫ τ

0
dτ ′Ψ(τ, τ ′) =

nα

2

∫ t

0
dx

∫ t−x

0
dy| det(J(x, y))|Ψ(x, y) =

nα

2

∫ t

0
dx

∫ t−x

0
dyΨ(x, y).

(C.9)

At last, we calculate third term in the right hand side of Eq. (3.4). To calculate this term,
we use these change of variables as below.

x = τ − τ ′ (C.10)

y = τ ′ − τ ′′ (C.11)

z = τ ′′ (C.12)

Integral range of τ, τ ′, τ ′′ is

τ ′′ : 0 → τ ′ (C.13)

τ ′ : 0 → τ (C.14)

τ : 0 → t. (C.15)

(C.16)

The integral range is shown in Fig. 3. Therefore, we have the integral range of x, y, z as

x : 0 → t (C.17)

y : 0 → t− x (C.18)

z : 0 → t− x− y, (C.19)
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which the range in shown in Fig. 4. Jacobian of the multiple integral is

J(x, y, z) =
∂(τ, τ ′, τ ′′)

x, y, z
=

 1 1 1
0 1 1
0 0 1

 . (C.20)

From, Eq. (3.21), Ω depends on only τ − τ ′ = x, τ ′ − τ ′′ = y. Therefore, the third term in the
right hand side of Eq. (3.4) becomes

2nα2

∫ t

0
dτ

∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′Ω(τ, τ ′, τ ′′) = 2nα2

∫ t

0
dx

∫ t−x

0
dy

∫ t−x−y

0
dz|det(J(x, y, z))|Ω(x, y)

= 2nα2

∫ t

0
dx

∫ t−x

0
dy(t− x− y)Ω(x, y).

(C.21)
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Figure 3: Integral range for τ, τ ′, τ ′′
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Figure 4: Integral range for x, y, z

D Calculation of expansion coefficients by engenmodes

In this appendix, we derive Eqs. (3.34) and (3.36) by using the eigenfunctions.
First, we show the derivation of the Eq. (3.34). We expand ∆D(ξ)Peq(ξ) in Eq. (3.26) by

using the basis set as

∆D(ξ)Peq(ξ) =
∑
n

cnψn(ξ). (D.1)
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By multiplying Eq. (D.1) by ψ†
m(ξ) and integrate it about ξ, we obtain∫

dξψ†
m(ξ)∆D(ξ)Peq(ξ) =

∑
n

cn

∫
dξψ†

m(ξ)ψn(ξ)

=
∑
n

cnδmn

= cm,

(D.2)

where cm is expansion coefficient for ∆D(ξ)Peq(ξ) in Eq. (3.26). Thus, we can obtain Eq. (3.34).
Second, we derive Eq. (3.36). Peq(ξ) can be expanded by eigenfunctions ϕm(ξ) as

Peq(ξ) =
∑
m

c(2)m ϕm(ξ) (D.3)

c(2)m =

∫
dξ′ϕ†m(ξ′)Peq(ξ

′). (D.4)

Expansion coefficient c
(2)
m can be obtained in the same way as Eq. (D.2). Therefore, Eq. (3.27)

can be rewritten as

Ψ(t, s) =

∫
dξ∆D(ξ)e−tŴ∆D(ξ)e−sV̂

∑
m

c(2)m ϕm(ξ)

=

∫
dξ∆D(ξ)e−tŴ∆D(ξ)

∑
m

c(2)m e−µmsϕm(ξ)

=
∑
m

c(2)m e−µms

∫
dξ∆D(ξ)e−tŴ∆D(ξ)ϕm(ξ).

(D.5)

Also, ∆D(ξ)ϕm(ξ) can be expanded by eigenfunctions ψn(ξ) as shown below.

∆D(ξ)ϕm(ξ) =
∑
n

c(3)mnψn(ξ) (D.6)

c(3)mn =

∫
dξ′′ψ†

n(ξ
′′)∆D(ξ′′)ϕm(ξ′′). (D.7)

Therefore, Eq. (D.5) can be calculated as

Ψ(t, s) =
∑
m

c(2)m e−µms

∫
dξ∆D(ξ)e−tŴ

∑
n

c(3)mnψn(ξ)

=
∑
m

c(2)m e−µms

∫
dξ∆D(ξ)

∑
n

c(3)mne
−tλnψn(ξ)

=
∑
n

∑
m

c(2)m c(3)mne
−µmse−tλn

∫
dξ∆D(ξ)ψn(ξ),

(D.8)

and we have Eq. (3.36).

E Derivation of correlation function in TS dumbbell model

In this appendix, we show the derivation of Eq. (3.50). From, Eq. (3.26), we have

Φ(t) = (1 1 1 1)∆D e−tW∆DPeq. (E.1)
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Due to the nature of diagonalization,

ψ−1Wψ = Λ (E.2)

∴ ψ−1Wkψ = Λk. (E.3)

Besides, the matrix exponential function is defined as

eA = E +A+
A2

2!
+
A3

3!
+ · · · . (E.4)

Therefore, e−tW can be calculated as

e−tW = E + (−tW) +
(−tW)2

2!
+

(−tW)3

3!
+ · · ·

= ψ

(
E + (−tΛ) + (−tΛ)2

2!
+

(−tΛ)3

3!
+ · · ·

)
ψ−1

= ψe−tΛψ−1.

(E.5)

Then, we have Eq. (3.50).

F Derivation of transition matrix in TS model

In this appendix, we derive the transition matrix in TS dumbbell model.
At first, we derive the transition possibilities by solving Eq. (3.49). The formal solution of

Eq. (3.49) is (
Pf (t+ δt)
Ps(t+ δt)

)
= exp

[
−δt

(
−kf ks
kf −ks

)](
Pf (t)
Ps(t)

)
. (F.1)

By diagonalizing the transition matrix in Eq. (3.49), we have(
Pf (t+ δt)
Ps(t+ δt)

)
= exp

[
−δt

(
ks 1
kf −1

)(
−kf ks
kf −ks

)(
ks 1
kf −1

)−1
](

Pf (t)
Ps(t)

)
=

1

kf + ks

(
ks + kfe

−δt(kf+ks) ks
(
1− e−δt(kf+ks)

)
kf

(
1− e−δt(kf+ks)

)
kf + kse

−δt(kf+ks)

)
.

(F.2)

Therefore, the transition possibilities for f → s and s→ f in δt are derived as

wfs =
kf

kf + ks

(
1− e−δt(kf+ks)

)
, (F.3)

wsf =
ks

kf + ks

(
1− e−δt(kf+ks)

)
, (F.4)

respectively. Using this result, we can obtain the time evolution of the state possibilities of the
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dumbbell as

Peq(t+ δt) =


P (ff, t+ δt)
P (fs, t+ δt)
P (sf, t+ δt)
P (ss, t+ δt)



=


(1− wfs)(1− wfs) (1− wfs)wsf wsf (1− wfs) wsfwsf

(1− wfs)wfs (1− wfs)(1− wsf ) wsfwfs wsf (1− wsf )
wfs(1− wfs) wfswsf (1− wsf )(1− wfs) (1− wsf )wsf

wfswfs wfs(1− wsf ) (1− wsf )wfs (1− wsf )(1− wsf )




P (ff, t)
P (fs, t)
P (sf, t)
P (ss, t)


≡ MPeq(t).

(F.5)

At the limit of δt→ 0, we have

P + δt
d

dt
P (t) = MP (t) (F.6)

∴ d

dt
P (t) =

1

δt
(M− I)P (t) = LP (t) (F.7)

L =
1

δt
(M− I) →


−2kf ks ks 0
kf −kf − ks 0 ks
kf 0 −kf − ks ks
0 kf kf −2kf

 , (F.8)

where I is a unit matrix with the size of 4× 4. Then, we can derive Eq. (3.62).
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